The classification of traveling wave solutions and superposition of multi-solutions to Camassa-Holm equation with dispersion
نویسنده
چکیده
Under the traveling wave transformation, Camassa-Holm equation with dispersion is reduced to an integrable ODE whose general solution can be obtained using the trick of one-parameter group. Furthermore combining complete discrimination system for polynomial, the classifications of all single traveling wave solutions to the Camassa-Holm equation with dispersion is obtained. In particular, an affine subspace structure in the set of the solutions of the reduced ODE is obtained. More general, an implicit linear structure in Camassa-Holm equation with dispersion is found. According to the linear structure, we obtain the superposition of multisolutions to Camassa-Holm equation with dispersion.
منابع مشابه
Stability of the mu-Camassa- Holm Peakons
The μ-Camassa-Holm (μCH) equation is a nonlinear integrable partial differential equation closely related to the Camassa-Holm equation. We prove that the periodic peaked traveling wave solutions (peakons) of the μCH equation are orbitally stable. AMS SUBJECT CLASSIFICATION (2000): 35Q35, 37K45.
متن کاملOn the Bifurcation of Traveling Wave Solution of Generalized Camassa-Holm Equation
The generalized Camassa-Holm equation ut + 2kux − uxxt + auux = 2uxuxx + uuxxx + γuxxx is considered in this paper. Under traveling wave variable substitution, the equation is related to a planar singular system. By making a transformation this singular system becomes a regular system. Through discussing the dynamical behavior of the regular system, the explicit periodic blow-up solutions and s...
متن کاملNumerical study of traveling-wave solutions for the Camassa–Holm equation
We explore numerically different aspects of periodic traveling-wave solutions of the Camassa–Holm equation. In particular, the time evolution of some recently found new traveling-wave solutions and the interaction of peaked and cusped waves is studied. 2005 Elsevier Ltd. All rights reserved.
متن کاملAn integrable shallow water equation with linear and nonlinear dispersion.
We use asymptotic analysis and a near-identity normal form transformation from water wave theory to derive a 1+1 unidirectional nonlinear wave equation that combines the linear dispersion of the Korteweg-deVries (KdV) equation with the nonlinear/nonlocal dispersion of the Camassa-Holm (CH) equation. This equation is one order more accurate in asymptotic approximation beyond KdV, yet it still pr...
متن کاملTraveling Wave Solutions of the Camassa-Holm and Korteweg-de Vries Equations
We show that the smooth traveling waves of the Camassa-Holm equation naturally correspond to traveling waves of the Korteweg-de Vries equation.
متن کامل